[CONTRIBUTION NO. 36 FROM THE THERMODYNAMICS LABORATORY, PETROLEUM EXPERIMENT STATION, BUREAU OF MINES]

Low-temperature Thermal Data for the Nine Normal Paraffin Hydrocarbons from Octane to Hexadecane

By H. L. FINKE, M. E. GROSS, GUY WADDINGTON AND H. M. HUFFMAN¹

RECEIVED AUGUST 24, 1953

Low-temperature thermal studies have been made on nine *n*-paraffin hydrocarbons (C_8 to C_{16}) over the temperature range 12 to 300 °K. For each compound values are given for the heat capacities in the solid and the liquid state, triple point and heat of fusion. The *n*-paraffins containing an odd number of carbon atoms exhibited solid-phase transitions; transition temperatures and heats of transition are given. From the calorimetric data a value of the entropy of each compound in the liquid state at 298.16 °K. has been computed. These entropy values are represented by the equation, $S_{298.16}(liq.) = 24.539 + 7.725N$ cal. deg.⁻¹ mole⁻¹, where N is the number of carbon atoms in the molecule.

Because of the importance of the *n*-paraffins in petroleum technology, a redetermination of the entropies of the compounds from *n*-octane to *n*-hexadecane inclusive has been made. Previously reported values of the entropy of some of these hydrocarbons² were based on heat capacity measurements over a somewhat limited temperature range on compounds of uncertain purity. The new measurements provide a more reliable value of the entropy of each compound in the liquid state at 298.16°K., which, when appropriately combined with heat of vaporization and vapor pressure data, yields a value of the entropy of each compound in the ideal gaseous state.³

The compounds studied, except *n*-tridecane and *n*-pentadecane, have been investigated by Parks² and his collaborators over the temperature range 80 to 300° K. The accuracy uncertainties of these earlier data were reported to be about 1%. Heat capacities of *n*-octane, *n*-nonane and *n*-decane in the liquid state from 5 to 45° have been measured by Osborne and Ginnings.⁴

The Materials.—The materials used in this investigation were A.P.I. Research samples.⁶ Their purities will be discussed in a separate section of this paper. The Apparatus.—All measurements were made in the

The Apparatus.—All measurements were made in the apparatus described by Ruchrwein and Huffman.⁶ In each study about 55 ml. of the material was sealed in a copper calorimeter that contained horizontal copper discs to facilitate attainment of thermal equilibrium and prevent settling of the solid phase during fusion experiments. To minimize heat interchange between the calorimeter and its environ-

(3) The extension of the data of this report to the ideal gaseous state and to the evaluation of the entropy increment per CH: group for the ideal gaseous state has been carried out by others. See W. B. Person and G. C. Pimentel, *ibid.*, **75**, 532 (1953).

(4) N. S. Osborne and D. C. Ginnings, J. Research Natl. Bur. Standards, **39**, 453 (1947).

(5) These samples of A. P. I. Research hydrocarbons have been made available through the American Petroleum Institute Research Project 44 on the "Collection, Analysis, and Calculation of Data on Properties of Hydrocarbons." These samples were purified by the American Petroleum Institute Research Project 6 on the "Analysis, Purification, and Properties of Hydrocarbons," from materials supplied by the following laboratories: *n*-octane, *n*-nonane, *n*-decane, *n*-undecane, *n*dodecane, *n*-tetradecane, *n*-hexadecane by the American Petroleum Institute Research Project 6 now located at the Carnegie Institute of Technology, Pittsburgh. Pa., *n*-tridecane and *n*-pentadecane by the American Petroleum Institute Research Project 42 at the Pennsylvania State College, State College, Pa.

(6) R. A. Ruehrwein and H. M. Huffman, THIS JOURNAL, 65, 1620 (1943).

ment, the temperature of the electrically heated adiabatic shield system was maintained as close as possible to that of the calorimeter surface. The temperature difference between the calorimeter and its environment was determined by a system of interconnected thermocouples in conjunction with a high-sensitivity galvanometer. The combination heaterthermometer unit used in the calorimeter was one of the set of five previously described.⁶ Measurements of the electrical energy supplied to the calorimeter and the resistance of the platinum resistance thermometer were made on a "White" double potentiometer. Measurements of potential were in terms of a bank of six saturated cadmium cells. The electrical stopclock used for time measurements was driven by a constant-frequency $(\pm 0.002\%)$ a.c. power source.

Numerical Constants.—The energy measurements were made in terms of the international joule and converted to calories by dividing by 4.1833. The ice point (0°C.) was taken to be 273.16°K. The 1951 International Atomic Weights⁷ were used.

Triple Point and Purity Determinations .--- The results of melting point studies made for each of the *n*-paraffins investigated are summarized in Table I. The observed equilibrium melting temperatures for these compounds were plotted as a function of the reciprocal of the fraction melted. If Raoult's law were obeyed and no solid solutions were formed, the experimental points would lie on straight lines.8 However, in each case, with the possible exception of *n*-nonane, the plots exhibited curvature that was concave upward, and in no specific instance was "ideal" behavior evidenced. For the sake of consistency, the concentration of the impurity, the melting point of the sample, and the triple point were calculated from a straight line through the points at which the sample was 70 and 90% liquid. The selection of these two points yields maximum values of the concentration of the impurity and the triple point.

To permit a comparison of the melting behavior of the several substances, the observed data for each hydrocarbon were plotted with the reciprocal of the fraction of sample melted (1/F) as abscissa and $K\Delta T'$ as ordinate. K is an arbitrary constant for each compound, so chosen that the slope of the straight lines through the 70 and 90% liquid points for the different compounds is the same; $\Delta T'$ is the difference between the temperatures corresponding to 90% liquid and the various fractions melted. Figure 1 illustrates the curves obtained by this treatment. "Ideal" behavior (characteristic of solutions containing no solid-soluble material and obeying Raoult's law) is represented by the straight

(7) E. Wichers, ibid., 74, 2447 (1952).

(8) S. S. Todd, G. D. Oliver and H. M. Huffman, *ibid.*, **69**, 1519 (1947).

⁽¹⁾ Deceased.

^{(2) (}a) G. S. Parks, H. M. Huffman and S. B. Thomas, THIS JOURNAL, **52**, 1032 (1930); (b) H. M. Huffman, G. S. Parks and M. Barmore, *ibid.*, **53**, 3876 (1931); (c) G. S. Parks and D. W. Light, *ibid.*, **56**, 1511 (1934); and (d) G. S. Parks, G. E. Moore, M. L. Renquist, B. F. Naylor, L. A. McClaine, P. S. Fujii and J. A. Hatton, *ibid.*, **71**, 3387 (1949).

Fig. 1.—Melting point curves for the n-paraffins.

line. With the possible exception of n-nonane, none of the materials studied shows this "ideal" behavior. The curves fall into two groups, one containing n-octane, n-decane, n-tetradecane and nhexadecane and the other containing n-undecane, n-dodecane, n-tridecane and n-pentadecane. Similar curves may be reproduced by applying van't Hoff's law for freezing point lowering to systems in which solid-soluble material is present. For a par-

TABLE I

Normal Paraffin Hydrocarbons from Octane through Hexadecane: Melting Point Summary^a

Liq., %	1/F	$T_{obsd.}, ^{o}K.$	$T_{\text{calcd., }}^{\circ}K.$
	n-C	Octane	
7.88	12.69	216.2664	216.2224
25.00	4,000	216.3414	216.3267
50.00	2.000	216.3528	216.3507
70.63^{b}	1.416	216.3576	216.3576
91.16^{b}	1.097	216.3615	216.3615
100.0	1.000		216.3627
Pure	0		216.375
$N_2^*/F =$	0.0533 ΔT ; imp	ourity = 0.06 =	\pm 0.03 mole%
	n -N	Ionane	
13.3	7.52	219.4661	219.4225
23.8	4.20	219.5406	219.5271
46.8	2.14	219.5987	219.5920
64.5^{\flat}	1.55	219.6105	219.6105
82.2^{b}	1.22	219.6210	219.6210
100.0	1.00		219.6279
Pure	0		219.659
$N_2^*/F =$	0.0386 ΔT ; imp	ourity = 0.12 =	$\pm 0.05 \text{ mole}\%$
	n-I	Decane	
10.74	9.31	243.4128	243.3701
26.30	3.802	243.4691	243.4538
52.32	1.911	243.4851	243.4826
73.14^{b}	1.367	243.4909	243.4909
93.96^{b}	1.064	243.4955	243 , 4955
100.0	1.000		243.4964
Pure	0		243.512
$N_2^*/F =$	0.0582 ΔT ; imp	ourity = 0.09	\pm 0.04 mole%

n-Undecane								
3.4	29.4	247.5749	247.4892					
23.9	4.18	247.5852	247.5775					
48.2	2.07	247.5864	247.5849					
68.7°	1.45	247.5870	247.5870					
89.1 ^b	1,12	247.5882	247.5882					
100.0	1.00		247.5886					
Pure	0		247.592					
$N_2^*/F = 0$.0435 ∆ <i>T;</i> imp	urity = $0.02 \pm$	0.01 mole%					
	n-Do	odecane						
10.86	9.21	263.5656	263,4846					
25.69	3 893	263.5691	263.5447					
50.70	1.972	263.5717	263.5664					
70.15°	1,426	263.5725	263.5725					
89.59^{b}	1.116	263,5760	263.5760					
100.0	1.000		263.5774					
Pure	0		263.589					
$N_2^*/F = 0$.0638 ΔT ; imp	ourity = $0.07 \pm$: 0.05 mole%					
	<i>n</i> -Tr	idecane						
12.0	8 34	267.7735	267.7160					
24.3	4.12	267.7750	267.7529					
48 7	2.05	267.7766	267.7725					
68.4^{b}	1.47	267.7783	267.7783					
88.0 ^b	1.14	267.7814	267,7814					
100.0	1.00		267.7827					
Pure	0		267.792					
M * / F = 0	0478 AT : imr	$n_{ritr} = 0.05 +$	- 0.04 mole%					
$N_2 / F = 0.0478 \Delta T$, impurity $= 0.05 \pm 0.04$ more γ_0								
	<i>n</i> -Tet	radecane						
8.90	11.24	278.9497	278.915					
23.54	4.248	278.9962	278.9848					
49.37	2.026	279.0085	279.0070					
69.16°	1.445	279.0129	279.0129					
89.81°	1.113	279.0162	279.0162					
96.69	1.034	279.0173	279.0170					
100.0	1.000		279,0173					
Pure	0		279.027					
$N_2^*/F = 0$).0696 ΔT ; imj	purity = $0.07 \pm$	= 0.04 mole%					
	<i>n</i> -Per	ntadecane						
12.3	8.12	283.0902	283.0267					
27.4	3.66	283.0915	283.0713					
52.1	1.92	283.0919	283.0887					
72.5^{b}	1.38	283.0941	283.0941					
92.8^{b}	1.08	283.0971	283.0971					
100.0	1.00		283.0979					
Pure	0		283.108					
$N_2^*/F = 0$).0519 ΔT ; imp	purity = $0.05 \exists$	$\pm 0.04 \text{ mole}\%$					
	<i>n-</i> He	xadecane						
10.72	9.328	291.2500	291.1944					
25.80	3.876	291.2982	291.2794					
50.44	1.983	291.3097	291.3090					
70.23^{b}	1.424	291.3178	291.3178					
90.01^{b}	1.111	291.3226	291.3226					
100.0	1.000		291.3242					
Pure	0		291.340					
$N_2^*/F = 0$	$0.0756 \ \Delta T$; im	purity = 0.12	\pm 0.06 mole%					
^a The imp	urity concent	ration was obt	ained from the					
equation N_2^* impurity in the liquid	$/F = A\Delta T$, where whole samples the state A is	where N_2^* is the le, F is the fraction the cryoscopic	mole fraction of ion of the sample constant (ΔH)					
RT^{2} _{T.P.}), and	ΔT is $T_{T,P}$	$-T_{obsd}$. ^b C	alculation based					
on these expe	erimental poin	ts.						

TABLE II (Continued)

Molal Hi	еат Сара	CITIES OF	THE NORM	IAL PARA	FFIN HY-			C_{satd} ,			Caatd,
DROCA	RBONS FR	OM OCTAN	E THROUGH	HEXADE	CANE	<i>Т</i> , °К.	ΔT	deg. ~1	<i>T</i> , °K.	ΔT	deg1
		Catd,			Castd,	192.30	7.872	42.504	258.08	9.639	64.354
<i>Τ</i> , °K.	ΔT	deg1	<i>Т</i> , °К.	ΔT	deg1	200.44	8.409	44.569	262.13	9.619	64.621
		n-Oc	etane			208.24	7.191	47.487	267.72	9.643	65.062
	Crystals		110.06	7.302	25.743	C	rvetale T	T	272.08	10.274	65.480
12.60	1.985	0.885	116.92	7.881	26.837	010 05	.1 y 3 can 3 1.	1.07	274.23	9.422	65.607
14.57	1.959	1.335	117.63	7.838	26.937	218.00	0.210	107	277.25	9.407	65.889
16.50	1.889	1.839	125.04	8.367	28.090	218.80	0.206	233	282.29	10.159	66.319
16.74	3.626	1.915	125.71	8.327	28,151		Liquid		283.59	9.301	66.453
18.81	2.732	2.543	133.63	8.816	29.295	225.03	5.769	63.264	286.59	9.284	66.778
20.27	3.417	2.998	133.67	7.606	29.307	230.09	6.623	63.193	292.38	10.014	67.360
21.65	2.951	3.464	142.18	9.397	30.495	232.85	9.869	63.227	292.82	9.171	67.439
23.60	3.255	4.118	151.39	9.035	31.786	237.93	9.070	63.309	295.81	9.158	67.739
24.63	2.986	4.469	160.75	9.677	33.036	242.69	9.811	63.467	301.94	9.058	68.364
27.26	4.056	5.394	170.25	9.331	34.380	247.38	9.829	63.641	304.91	9.036	68,693
28.04	3.846	5.666	179.43	9.016	35.754	252.46	9.723	63.9 6 0	313.88	8.906	69.699
31.37	4.156	6.839	188.72	9.571	37.254						
35.91	4.928	8.410	197.88	8.748	38.920			_			
40.78	4.808	10.014	206.95	9.385	41.237			n-D	ecane		
45.72	5.079	11.564		T 1 1 1			Crystals		171 53	9 745	40 875
50.89	5.257	13.121		Liquid			Crystais		175.36	9 589	41 577
56.50	5.970	14.748	222.61	7.336	55.590	12.28	1.890	0.873	175 71	3 529	41 529
62.65	6.336	16.369	226.74	7.371	55.696	14.07	1.681	1.303	179 22	3 480	42 172
67.30	4.902	17.472	230.21	8.145	55.790	14.45	1.558	1.399	179.33	8,668	42.250
68.69	5.741	17.805	231,95	11.329	55.837	15.82	1.830	1.784	181.11	9.414	42.566
72.92	6.321	18.748	234.90	8.948	55.967	16.23	1.990	1.912	182.67	3,429	42,893
74.64	6.160	19.149	239.13	9.695	56.161	17.65	1.841	2.353	183.62	6.529	42.871
79.39	6.638	20.192	242.81	10.404	56.338	18.79	3.134	2.749	186.08	3.389	43.572
84.22	5.624	21.236	249.17	10.395	56.689	19.93	2.716	3,156	187.85	8.390	43.874
86.17	6.916	21.628	252.76	9.493	56.907	21.97	3.233	3.920	189.45	3.337	44.234
90.21	6.355	22.403	259.50	10.259	57.420	22.78	2.985	4.225	190.36	9.096	44.326
93.25	7.248	22.952	262.19	9.367	57.650	20.07	3.882	0.300 5 400	190.51	7.246	44.403
96.40	6.034	23.473	269.68	10.113	58.195	20,79	3.044	0.408	192.76	3.295	44.884
96.68	6.035	23.476	271.88	10.002	58.378	29.29	5.902	0.040 7 146	196.04	3.269	45.277
100.78	7.805	24.240	279.35	9.223	59.012	29.99	2 804	9 097	196.14	8.171	45.207
102.30	5.759	24.508	281.43	9.116	59.189	38 43	1 038	10 578	197.24	6.212	45.420
103.05	6.702	24.593	289.27	10.609	59.917	42.86	4 822	12 308	199.29	3.233	45.847
107.95	5.541	25.413	290.49	8.992	60.047	47 34	4.022	12.008	199.77	9.712	45.869
108.83	8.295	25.548	297.58	5.192	60.680	51 71	4 581	15 507	203.81	6.936	46.670
		n-No	onane			54 55	4.001 4.277	16 571	204.19	7.940	46.750
(Crystals I		67 85	6 004	19 322	59.38	5 373	18 180	209.32	9.393	47.732
11.93	1.792	0.837	73 61	5.518	20 798	64 76	5 387	19 863	218.14	8.253	49.741
13.80	1.962	1.278	79.44	6.134	22.240	70 40	5.902	21 472	226.26	7.977	51.858
15.75	1.947	1.790	85.37	5.721	23.665	76.51	6.322	23,140	233.70	6.903	54.448
15.94	2.666	1.863	91.46	6.474	24.963	82.60	5.863	24.764	239.27	4.238	60.440
17.76	2.075	2.378	97.77	6.143	26.202	86.44	4.852	25.650		Liquid	
19.30	4.056	2.893	103.78	5.867	27.339	88.68	6.285	26.230	247.02	4.830	70.978
20.31	3.028	3.226	109.99	6.560	28.466	92.16	6.594	26.958	251.70	4.840	71.173
22.74	2.821	4.082	116.42	6.296	29.617	95.03	6.411	27.578	252.30	7.981	71.202
23.57	3.487	4.380	118.30	4.976	29.911	98.58	6.249	28.306	252.63	6.405	71.261
25.94	3.575	5.250	122.52	5.902	30.678	101.28	6.101	28.864	256.53	4.818	71.441
26.97	3.313	5.637	124.25	6.921	30.887	105.18	6.940	29.632	260.61	9.535	71.709
29.57	3.680	6.613	128.88	6.840	31.716	111.97	6.637	30.915	261.03	9.493	71.739
29.98	2.701	6.774	131.86	8.307	32.175	118.96	7,390	32.230	270.08	9.418	72.411
33.38	3.927	8.096	135.61	6.614	32.801	126.21	7.101	33.520	270.48	9.389	72.426
37.37	4.046	9.541	140.35	8.674	33.531	133.19	6.856	34.721	279.46	9.304	73.179
41.76	4.743	11.141	142.65	7.471	33.915	140.48	7.735	35.930	279.82	9.298	73.242
46.5 6	4.852	12.802	149.38	9.377	34.939	148.09	7.485	37.168	289.09	9.944	74.171
51.11	4.247	14.360	150.01	7.238	35.062	155.47	7.264	38.348	289.44	9.944	74.219
55.75	5.041	15.843	158.58	9.022	36.377	158.07	7.157	38.752	298.59	9.053	75.222
56.21	6.240	15.990	167.44	8.710	37.805	163.13	8.062	39.545	299.31	9.800	75.299
61.09	o.626	17.466	176.01	8.421	39.274	166.11	8.924	40.045	309.04	9.656	76.416
62.09	0.524	17.750	184.29	8.143	40.833	171.08	7.829	40.839	318.62	9.511	77.588

		(TABLE II	Continued	l)			I	ABLE II	(Continued)			
		Csatd,			CBaid,			Castd,			Castd,	
<i>т</i> .°К.	ΔT	deg1	<i>T</i> , °K.	ΔT	deg. ~1	<i>T</i> , °K.	ΔT	deg1	<i>т</i> , °К.	ΔT	deg1	
		n-Und	ecane			134.64	7.548	40.580	225.15	9.556	58.729	
C	rvstals	т	110 35	8 562	33 414	134.86	7.559	40.601	234.53	9.221	61.282	
12.15	1.663	0.967	111.01	8.561	33.553	138.41	6.615	41.084	243.59	8.901	63.994	
13.74	1.552	1.380	117.38	8.301	34,729	142.48	8.127	42.076	251.86	7.623	66.932	
14.56	1.981	1.616	119.51	9.785	35.286	143.56	9.849	42.260	258.41	5.493	70.340	
15.38	1.730	1.844	120.15	9.713	35.375	146.04	8.638	42.761		Liquid		
16.51	1.923	2.204	126.81	10.561	36.620	153.21	9.456	44.052	266.69	4.605	86.984	
17.31	2.149	2.455	129.51	10.258	37.246	155.04	9.357	44.326	272.39	10.719	87.249	
18.87	2.779	3.008	129.64	9.278	37.223	162.50	9.120	45.741	272.82	7.656	87 .377	
19.65	2.533	3.290	137.10	10.023	38.588	164.72	10.020	46.135	281.20	9.118	88.040	
21.76	3.001	4.114	139.20	9.838	39.009	171.48	8.827	47.418	283.06	10.616	88.198	
22.33	2.841	4.327	147.84	11.460	40.536	174.83	10.187	48.034	29 0. 28	9.027	88 .960	
24.77	2.027	5.320	159.53	11.905	42.597	180.64	9.495	49.175	293.61	10.485	89.340	
25.37	3.244	5.568	171.17	11.377	44.766	184.79	9.748	49.958	299.25	8.93 0	89.999	
28.24	3.905	6.774	182.31	10.907	46.904	194.96	10.585	51.968	304.03	10.347	90.585	
28.87	3.743	7.049	193.00	10.474	49.116	205.37	10.228	54.149	308.13	8.827	91.085	
31.98	3.591	8,398	203.27	10.063	51.424	215.42	9.885	56.394	317.41	8.721	92.282	
35.86	4.168	10.095	214.07	11.545	54.216			n-Tri	decane			
39.83	3.765	11,777					З	<i>n-</i> 111	100 40	0 404	40 574	
43.86	4.302	13.479	C	rystals I	I	11 70	_rystais i	0.050	128.48	8.484	42.074	
48.12	4.208	15.226	240.82	3.384	83.068	11.78	1.424	0.950	135.09	9.022	43.993	
53.07	5.704	17.175	242.25	2.680	83.992	12.93	1.000	1.203	137.10	8.840	44.402	
56.78	5.210	18.559	243.82	2.615	86.517	13,23	1.003	1,300	144.40	9.591	40.903	
58.44	5.027	19.174				14.07	1.004	1.780	103.81	9.244	47.887	
62.36	5.951	20.593		Liquid		14.73	1.001	1.790	162.90	8.930	49.692	
67.89	5.564	22.406	251.74	6.299	78,838	10.30	1.720	2,319	107.95	7.800	0U.070	
68.96	7.250	22.778	255.08	7.001	78.892	10.40	1.093	2.357	172.09	8.715	51.439	
74.05	6.762	24.289	259.76	9.748	79.085	18.21	1.983	2.999	172.03	10.523	01.744 50.410	
76.64	8.116	25.117	262.76	8.349	79.275	18.09	2.152	3.004	170.10	8.010	02.41Z	
80.91	6.949	26.350	269.46	9.654	79.661	20.23	2.008	0.804 4.002	181.13	9.300	00.440 52.940	
84.92	8.449	27.526	271.07	8.278	79.758	20.70	2.094	4.003	184.01	9.200	54 241	
87.60	6.445	28.202	279.07	9.568	80.439	22.00	2.002	4.790 5.940	184.94	9.101	55 603	
93.52	8.747	29.683	280.00	9.575	80.524	25.02	2.921	6 000	190.79	9.940	55 942	
94.69	7.735	29.915	288.58	9.458	81.394	20.09	2.090	6 600	191.00	10.910	57 075	
101. 98	8.172	31.612	289.52	9.461	81.521	20.45	0.029 9.675	7 206	200.89	0.976	60 572	
10 2.6 5	8.169	31.701	297.98	9.340	82.461	20.10	2.070	8 102	210.90	9.010	64 438	
109.75	6.968	33.109	298.92	9.350	82.515	20.00	2 782	8 733	220.35	8 009	67 741	
						33 71	4 230	10 130	230.13 241.51	7 655	71 580	
		n-Dod	ecane			37.96	4.260	12 224	241.01	7 264	76 324	
	Crystals		57.81	4.796	20.241	42.58	4 982	14 519	240.01	1.201	10.021	
11.82	1.520	0.850	60.63	5.273	21.344	47.68	5 213	16 952	C	rystals I	I	
13.34	1.564	1.235	61.80	6.897	21.742	52.97	5 362	19 418	258 31	2 795	104_0	
14.89	1.536	1.667	62.39	4.366	21.998	55.88	4.997	20.700	260.69	3.421	107.9	
15.04	2.234	1.716	65.67	4.806	23.170	58.39	5.484	21.810	261.39	3.349	109.3	
16.40	1.488	2.158	68.32	6.142	24.085	60.98	5.202	22.884	264.02	3.251	114.6	
17.21	2.097	2.417	71.03	5.912	24.983	63.93	5.599	24.084				
17.97	1.648	2.692	74.65	6.529	26.142	66.26	5.372	25.026		Liquid		
19.64	1.695	3.327	76.72	5.459	26.805	72.74	7.582	27.368	271.66	4.502	94.950	
19.72	2.932	3.377	81.34	6. 84 4	28.263	79.97	6.879	29.906	276.53	5.239	95.132	
21.67	2.354	4.170	82.41	5.937	28.588	86.97	7.135	32.181	278.11	6.044	95.223	
22.77	3.146	4.631	88.45	6.345	30.350	94.21	7.406	34.236	283.24	8.185	95.646	
24.23	2.746	5.256	88.74	7.955	30.393	101.92	8.013	36.274	285.26	8.255	95.828	
25.92	3.157	6.026	94.73	6.007	31.911	110.64	9.417	38.458	291.39	8.114	96.487	
27.05	2.894	6.534	96.43	7.434	32.300	119.79	8.898	40.632	299.11	7.313	97.32 0	
29.23	3.454	7.544	100.95	6.432	33.408	126.28	8.594	42.060	306.38	7.243	98.298	
29.97	2.938	7.894	104.16	8.010	34.131			4 Tota	radecana			
32.92	3.928	9.280	107.24	6.149	34.845		a	<i>n-</i> 1eti	auccane	1 0 10	0 107	
36.68	3.604	11,050	111.96	1.597	35.893	10 00	Crystals	1 001	15.93	1,949	2.167	
4(1,4()	3.822 4 80-	12.701	110.40	0.000	50.245 97 400	12.09	2.120	1.004	17.39	1.808	2.707	
44.62	4.020	14.004	190.40	7.040	07.492 97.700	12.19	1.080	1,026	17.87	1.932	⊿.890 2.474	
48.94	4.017	10.084	120.49	7 040	30.044	13.83	1 010	1.492	19.29	0 000 1.991	0.4/4 9 7=0	
00.18 55 00	5 000	10,090	120.90	040	20 156	14.00	1 706	1.007 9_∩69	19.94 91 51	2.445	0.709 4 461	
00.00	0.000	10.000	191.00	0.000	09.100	10.00	1.100	2.002	41.01	4. 110	1.101	

337

		Table II	(Continued)					1	TABLE II	(Continued)		
		$C_{\text{satd}},$ cal.			Csatd, cal.				Csatd, cal.			Castd,
<i>т</i> , °К.	ΔT	deg 1	<i>Т</i> , °К.	ΔT	deg1	<i>T</i> , °K	,	ΔT	deg1	<i>т</i> , °К.	ΔT	deg1
22.42	2.773	4.887	175.77	7.582	54.968	128.8	8 8	3.384	48.051	214.93	9.226	68.90 0
24.14	2.815	5.712	177.58	7.561	55.344	129.5	1 8	8.310	48.226	222.58	9.302	71.357
25.48	3.337	6.364	180.87	6.547	55.995	132.8	57	7.770	48.939	224.49	9.900	71.936
27.02	2.941	7.140	181.95	7.405	56.275	137.2	26	7.201	50.108	231.72	8.980	74.429
28.47	2.041	1.884	182.14	7.118	20,188	137.4	:9 ð	8,840	50.104	234.21	9.039	70.249
29.98	2.908	0.000 10.940	185.20	1.081	57 057	141.0	13 i 19 i	5.041 0 500	51 967	241.90	0 162	78.291
36 57	3 640	12 102	187.80	7 304	57 530	144.2	10 0	5.090 6 074	51 801	243.50 244.51	10 456	70 327
40 31	3 841	14 156	189.26	7 222	57 896	146 1	1 9	8 386	52 185	244.01 252.24	9 111	83 055
44 55	4.635	16.322	189.60	7.791	57.887	149 4	12	8 235	52,919	252.53	8.776	83.178
49 33	4.943	18,763	191.03	8.167	58.273	151.1	8	9.307	53.365	254.71	9.936	84.394
54.19	5.199	21.084	193.66	8.052	58.861	154.8	4	9.095	54.191	261.57	8.321	88.805
54.39	5.161	21.185	195.02	7.128	59.107	157.8	52	7,968	54.801	262.26	5.170	89,389
59.10	4.626	23.361	197.28	7.587	59.633	158.6	8 9	9.959	55.011	267.31	4.925	94.862
59.27	4.605	23.429	199.05	7.877	60.092	160.8	31 9	9.954	55.632			-
63.87	4.897	25.431	202.06	6.958	60.796	164.2	6 9	9.742	56.375	C	rystals I	1
68.88	5.123	27.443	205.18	8.205	61.510	165.8	30 9	9.715	56.483	273.02	2.885	130.1
74.22	5.547	29.469	208.94	6.811	62.297	168.2	27 8	8.327	57.114	276.27	3.451	138.7
79.99	5.991	31.582	213.93	9.375	63.652	168.4	5 9	9.586	57.314	276.28	3.637	138.7
86.17	6.371	33.720	223.20	9.079	66.074	170.7	'9 10	0,006	57.909	277.13	4.711	141.4
88.33	5.483	34.362	232.14	8.796	68.554	173.8	33	9.405	58.591	278.01	5.577	143.6
92.36	6.002	35.587	240.79	8.523	71.174	175.3	33 9	9.348	58.842	279.79	3.386	150.7
94.04	5.945	36.026	244.52	9.766	72.390	176.9		8.953	59.207		Liquid	
98.56	0.410	37.343	249.18	8.243	74.064	177.8	57	9.265	59.509 60.106	005 51	4.050	111 101
100.07	7.100	37.800	249.67	10.134	75.741	180.0)2	9.659	60.196 60.766	285.51	4.203	111.101
104.83	7 605	39.017	204.10	9.390	70.000	185.1	.4 : :9 i	9,101	61 049	289.70	4,239	111.404
115 49	7.090	41 758	250 58	0.679	77 818	184.0	5	9.000	61 438	291.02	0.804	112.089
192 00	7 801	43 543	209.08	9.019	70 501	100.1	10 1	9.024	62 040	290.09	6 921	112.009
130 82	7 578	45 284	268.21	7 583	81 923	195.8	24	9 867	63 843	304 48	8 349	112.000
138.27	7.314	46.978	200.21	1.000	01.0=0	205.4	55	9.538	66.387	312.78	8.265	114,233
145.85	7.859	48,619		Liquid		20010		0.000		0-2110	0.200	
153.90	8.255	50.317	282.71	4.343	103.186				n-Hex	adecane		
162.03	7.999	52.049	285.88	4.849	103.490		C	rvetale		68 08	5 128	30 685
167.95	5.890	53.139	288.48	7.196	103.760	11 (an C.	1 526	1 052	73 12	6 564	32 416
169.91	7.770	53.723	291.74	6.877	104.122	12.8	37	1.781	1.348	74.21	5 331	32 910
174.25	6.705	54.558	295.65	7.145	104.484	13.4	14	1.593	1,506	79.41	6.020	35.059
174.44	7.606	54.635	298.60	6.828	104.841	14.0	30	1.678	1.896	79.46	5.179	35.081
174.92	7.329	54.394	302.77	7.085	105.352	15.0	01	1.576	2.016	84.88	5.656	37.261
			4			16.3	37	1.862	2.545	85.62	6.387	37.511
		n-Pen	tadecane			16.	56	1.528	2.580	90.38	5.347	39.222
(Crystals	I	44.39	4.654	17.094	18.	16	1.687	3.251	92.18	6.738	39.804
11.84	1.456	1.031	49.19	4.949	19.715	18.3	35	2.101	3.348	95.96	5.818	41.024
12.32	1.923	1.170	54.25	5.155	22.305	19.8	37	1.730	4.014	99.08	7.067	41.951
13.34	1.539	1.460	56.77	5.064	23.551	20.'	76	2.719	4.491	101.65	5.564	42.761
14.16	1.771	1.680	59.77	5.896	25.034	21.9	93	2.399	5.062	106.00	6.761	44.027
14.86	1.519	1.967	62.11	5.623	26.121	23.0	53	3.020	5.938	107.44	6.001	44.497
15.97	1.801	2.412	60.30 67.47	5.271	27.044	24.8	03 10	2.788	6.405	111.92	5.579	45.703
10.00	1.740	2.040	07.47 70.90	5.089 5.616	28.047	20.0	08	3.084	7.009	113.00	7.307	40.058
18.28	1 803	3.108	78.65	6 044	33 050	27.6	59 16	2.920	0.518	114.11	7.001 9.051	40.397
19.74	1 861	3 908	84 87	6 401	35 445	30 -	22	3 000	9.013	121 13	8 771	47.090
20 24	2,111	4.126	86.84	6.310	36 122	33	22	3 201	11 755	121.10 122.16	8 756	48 600
21.85	2.355	4.867	91.31	6.468	37.609	37.5	21	3.578	13.752	127.02	8.546	49.794
22.66	2.711	5.267	93.33	6.668	38.230	40.9	90	3.788	15.944	130.02	9.012	50.632
24.40	2.761	6.119	98.10	7.117	39.697	45.0	30	5.615	18.658	135.39	8.189	51.974
25.67	3.302	6.770	99.70	6.061	40.169	50.	79	4.758	21.577	139.90	10.746	53.068
27.24	2.903	7.601	105.50	7.688	41.866	54.5	28	5.208	23.502	143.74	8.522	53.995
28.64	2.626	8.329	106.10	6.737	42.015	55.0	37	5.010	24.237	153.13	10.249	56.239
29.89	2.409	8.991	113.13	7.340	43.995	59.5	20	4.628	26.068	160.48	9.870	57.885
32.79	3.375	10.627	113.44	8.197	44.061	60.0	34	5.959	26.790	163.18	9.859	58.590
36.33	3.706	12.637	120.75	7.886	46.020	63.	96	4.897	28.421	170.39	9.951	60.294
40.12	3.885	14.761	121.45	7.812	46.195	66.'	73	6.220	29.630	172.87	9.519	60.905

	TABLE II		(Continued))	
T. °K.	ΔT	Csatd, cal. deg1	<i>т.</i> °К.	ΔT	C _{satd} , cal. deg. ⁻¹
178.53	7.369	62.148	256.92	10.268	85.252
180.76	10.789	62.808	267.41	10.725	89.709
182.69	10.118	63.298	277.89	10.222	95.164
186.39	8.357	64.252		Liquid	
191.92	11.540	65.562	295.41	5.633	119.622
192.64	9.785	65.739	298.93	6.973	119.945
195.19	9.243	66.427	301.73	7.002	120.282
202.69	10.323	68.319	302.50	5.649	120.389
204.84	10.046	68.929	305.88	6.923	120.832
215.25	10.790	71.749	308.13	5.611	121.204
225.85	10.407	74.811	308.70	6.938	121.176
236.08	10.055	77.959	312.77	6.864	121.859
246.45	10.672	81.361	320.28	8.163	123.091

ticular case, a family of such curves may be generated by assuming various distribution coefficients of the solute between the solid and liquid phases. Thus the deviation from linearity of the curves in Fig. 1 probably is caused primarily by the presence of solid-soluble material.

Heat Capacities of Solid and Liquid.—The experimentally determined heat capacity values are given in Table II. The property measured was C_{satd} , the heat capacity of the condensed phase under its own vapor pressure. Under the experimental conditions involved in this investigation C_{satd} is equivalent to C_p . The precision uncertainty of the measurements was, in general, less than $\pm 0.1\%$ and above 30°K., it is believed that the accuracy uncertainty should not exceed $\pm 0.2\%$. The heat capacity data for n-nonane, n-undecane, n-tridecane and n-pentadecane between the temperatures of transition and fusion may be less accurate than at other temperatures because of the very small temperature range and uncertainty in determining the exact amount of solution formation caused by liquid-soluble impurities.

In Table III are listed heat capacity data at integral temperatures as read from a smooth curve through all the data for each hydrocarbon.

A comparison of the heat capacity data for *n*-octane, *n*-nonane and *n*-decane in the liquid state, between 5 and 45°, with those of Osborne and Ginnings⁴ shows for *n*-octane and *n*-nonane an average deviation of -0.07% and a maximum deviation of -0.14%; for *n*-decane the average and maximum deviations are -0.08 and -0.17%, respectively. Osborne and Ginnings estimate accuracy uncertainties of $\pm 0.1\%$ for *n*-octane and *n*-nonane and $\pm 0.3\%$ for *n*-decane. The results of the two investigations agree within the estimated accuracy uncertainty of each.

Heats of Fusion.—Duplicate determinations were made of the heats of fusion of each compound. Mean values are listed in Table IV, together with the cryoscopic constants ($\Delta H_{\text{fusion}}/RT^2_{\text{T.P.}}$). In the calculation of the isothermal heats of fusion from enthalpies measured over finite temperature intervals, the heat capacity data of Table II, approximately corrected for heterophase premelting effects, were used. Because of lack of knowledge of the nature of the impurities and the exact amount of heterophase premelting, the accuracy uncertainty in the heats of fusion may be considerably greater than the precision uncertainty listed in Table IV. For each of the hydrocarbons that contains an odd number of carbon atoms, all of which underwent transitions only a few degrees below their melting points, the total enthalpy change between a temperature below that of the transition and one above the melting point may be determined precisely, but division of this total enthalpy change into heat of transition, heat of fusion and $\int C_{satd} dT$ is somewhat arbitrary. Fortunately, this arbitrariness introduces little error into the value of the entropy computed from the calorimetric data.

Transition Temperatures and Heats of Transition.—The transition temperatures were studied by observing the equilibrium temperatures corresponding to various fractions transposed. From plots of the equilibrium temperatures vs. fraction of sample transposed the temperatures corresponding to 100% transposed were determined. The transition temperatures and corresponding heats of transition are listed in Table V.

Entropies.—The molal entropies of the *n*-paraffins in the liquid state at 298.16°K. were computed from the thermal data over the temperature range 12 to 298.16°K. The results of these calculations are summarized in Table VI. By means of a least-squares adjustment the following equation for the molal entropies of the *n*-paraffin hydrocarbons (C₈ to C₁₆, inclusive) in the liquid state at 298.16°K. was fitted to the experimental data:

$S_{298\cdot16}(\text{liq.}) = 24.539 + 7.725 \ N \text{ cal. deg.}^{-1} \text{ mole}^{-1}$

where N is the number of carbon atoms in the *n*paraffin hydrocarbon chain. For the sake of internal consistency more significant figures were retained in this equation than the accuracy of the data warrants. The maximum and average deviations from this equation for the compounds *n*-octane through *n*-hexadecane are 0.04 and 0.02%, respectively. Extrapolation of this equation to give the entropies of *n*-heptane and *n*-hexane in the liquid state at 298.16°K. yields values that are 0.16 and 0.19% higher, respectively, than experimental entropy values determined in this Laboratory.⁹ These larger deviations indicate that the entropy increment per CH₂ group for the liquid is not precisely a constant below C₈.

Discussion.—The measurements of the heat capacities of the normal paraffins studied were straightforward, with one exception. Crystalline *n*-decane exhibited anomalous behavior in the temperature region between 170 and 200°K. In this region heat capacity data were not reproducible within the normal precision of the measurements. Various slow rates of cooling and heating were used during four separate series of measurements through the region of anomalous behavior, and in no case was any discontinuity detected in the C_{satd} vs. T curve that might have been caused by a lambdatype transition or eutectic melting (caused by an impurity).

Parks and Light,²⁰ in measurements of the heat

(9) n-Hexane, D. R. Douslin and H. M. Huffman, THIS JOURNAL,
68, 1708 (1946); n-Heptane, 78.51 cal. deg.⁻¹ mole⁻¹, unpublished data, this Laboratory.

TABLE III												
Smoothed	Heat	CAPACITIES	OF	THE	Normal	Paraffin	Hydrocarbons	FROM	Octane	THROUGH	Hexadecane,	CAL.

	$Dec.^{-1} Mole^{-1}$								
<i>т</i> , ° К .	Octane	Nonane	Decane	Undecane	Dodecane	Tridecane	Tetradecane	Pentadecane	Hexa- decane
12	0.75	0.85	0.81	0.93	0.90	1.02	0.98	1.08	1.08
13	.98	1.08	1.04	1.18	1.15	1.29	1.25	1.37	1.38
14	1.20	1.33	1.29	1.45	1.41	1.58	1.54	1.68	1.69
15	1.45	1.60	1.55	1.74	1.70	1.89	1.86	2.02	2.03
20	2.91	3.12	3.18	3.43	3.48	3.72	3.79	4.03	4.11
25	4.60	4.92	5.09	5.41	5.60	5.89	6.14	6.44	6.65
30	6.36	6.80	7.15	7.53	7.90	8.29	8.70	9.07	9 .49
35	8.10	8.69	9.21	9.72	10.25	10.79	11.37	11.92	12.42
40	9.76	10.53	11.18	11.84	12.58	13.27	13.98	14.72	15.41
45	11.35	12.29	13.11	13.96	14.82	15.71	16.58	17.46	18.32
50	12.85	13.99	14.98	15.97	17.01	18.05	19.09	20.14	21.13
55	14.34	15.63	16.72	17.89	19.07	20.32	21.45	22.70	23.89
60	15.69	17.14	18.38	19.74	21.08	22.48	23.74	25.14	26.47
65	16.94	18.55	19.94	21.46	22.92	24.53	25.89	27.48	28.85
70	18.10	19.86	21.37	23.09	24.64	26.41	27.90	29.58	31.07
75	19.23	21.12	22.77	24.62	26.25	28.18	29.79	31.62	33.23
80	20.34	22.38	24.08	26.09	27.85	29.93	31.61	33.62	35.3 0
85	21.40	23.59	25.33	27.52	29.37	31.59	33.33	35.48	37.28
90	22.35	24.66	26.49	28.82	30.73	33.05	34.87	37.18	39.09
95	23.23	25.65	27.58	30.02	31.97	34.45	36.33	38.76	40.72
100	24.08	26.63	28.60	31.17	33.16	35.79	37.72	40.28	42.26
110	25.74	28.47	30.55	33.33	35.46	38.29	40.36	43.14	45.23
120	27.31	30.22	32.42	35.36	37.61	40.68	42.82	45.81	48.00
130	28.78	31.88	34.18	37.28	39.64	42.90	45.13	48.36	50.62
140	30.19	33.48	35.85	39.11	41.60	45.05	47.34	50.78	53.09
150	31.58	35.03	37.47	40.90	43.45	47.10	49.51	53.10	55.48
160	32.94	36.58	39.06	42.68	45.28	49.12	51.60	55.40	57.84
170	34.30	38.19	40.65	44.54	47.13	51.13	53.73	57.69	60.20
180	35.81	39.95	42.31	46.44	49.05	53.23	55.87	60.02	62.62
190	37.41	41.90	44.05	48.47	50.97	55.45	58.04	62.42	65.12
200	39.19	44.18	45.86	50.66	53.01	57.78	60.29	64.95	67.63
210	41.21	47.16	47.81	53.10	55.15	60.30	62.68	67.56	70.28
220	55.54	63.43	50.06	55.81	57.46	63.18	65.23	70.47	73.11
230	55.78	63.19	52.58	58.55	60.03	66.50	67.96	73.80	76.05
240	56.19	63.37	55.32	82.69	62.88	70.79	70.95	77.49	79.18
250	56.74	63.82	71.10	78.75	66.20	77.12	.74.29	81.92	82.57
260	57.45	64.47	71.67	79.14	69.99	106.6	78.03	87.68	86.4 2
270	58.22	65.27	72.39	79.72	87.18	94.93	82.78	98.73	90.71
280	59.07	66.14	73.24	80.52	87.93	95.37	102.82	148.8	95.61
290	59.99	67.11	74.27	81.55	88.91	96.32	103.91	111.51	100.83
298.16	60.74	67.97	75.16	82.47	89.86	97.25	104.79	112.32	119.85
300	60.90	68.16	75.37	82.68	90.08	97.47	105.01	112.53	120.08
310		69.25	76.53		91.32	98.72		113.82	121.43
320		70.40	77.76		92.61				123.05

capacity of n-tetradecane, observed a "hump" in the C_{satd} vs. T curve in the neighborhood of 194° K. corresponding to an excess enthalpy of 43.6 cal. mole-1. This anomaly was not observed in the present study.

The increase of heat capacity with temperature is abnormal in the melting region for the hydrocarbons containing an even number of carbon atoms and in the region immediately below the transition temperature for the "odd" n-paraffins. In Fig. 2 the specific heat vs. reduced temperature ($\tau =$ $T/T_{\text{T.P.}}$ curves for *n*-nonane (representative of the "odd" *n*-paraffins), *n*-dodecane and *n*-hexadecane (representative of the "even" n-paraffins) are given to permit comparison of the shapes of the

various curves in these temperature regions. The reduced temperature was chosen as abscissa to permit a comparison in spite of widely different transition or melting points. The dashed lines are visual extrapolations of the "normal" specific heat curves. In each case the onset of the marked increase of slope of these curves occurs at a value of the specific heat of about 0.3 cal. deg.⁻¹ g.⁻¹. It is difficult to estimate quantitatively the amount of excess heat capacity above the "normal" value. However, it is considerably larger than heterophase premelting effects that may be calculated from impurity values determined in the melting point studies by a factor ranging from 2 for *n*-octane to 8 for *n*-hexadecane. Similar phenomena have been reported by other in-

TABLE IV

HEATS OF FUSION AND CRYOSCOPIC CONSTANTS OF THE ONORMAL PARAFFIN HYDROCARBONS OCTANE TO HEXADEC-

	TNE	
Compound	Heat of fusion, cal. mole ⁻¹	Cryoscopic constant, ^a deg. ⁻¹
<i>n</i> -Octane	4957 ± 1^{b}	0.05328
<i>n</i> -Nonane	3697°	.03856
<i>n</i> -Decane	6863 ± 2	.05824
<i>n</i> -Undecane	5301 [°]	.04352
<i>n</i> -Dodecane	8804 ± 5	.06376
<i>n</i> -Tridecane	6812 ± 1	.04780
<i>n</i> -Tetradecane	10772 ± 1	.06962
n-Pentadecane	8268 ± 4	.05191
n-Hexadecane	12753 ± 3	.07561

 $^{a}\Delta H_{\rm fusion}/RT^{2}_{\rm T.P.}$ b Precision uncertainty. c Obtained from enthalpy measurements of transition and fusion heats combined.

TABLE V

MOLAL HEATS OF TRANSITION AND TRANSITION TEMPERA-TURES

Compound	Transition temp., °K.	Heats o I	f transiti II	on, cal./mole ⁻¹ Mean
<i>n</i> -Nonane <i>n</i> -Undecane	$\frac{217.2}{236.6}$			1501° 1639°
<i>n-</i> Tridecane <i>n-</i> Pentadecane	$\begin{array}{c} 255.0\\ 270.9 \end{array}$	1832 2186	$1829 \\ 2195$	1831 ± 2^{b} 2191 ± 5^{b}

 $^{\rm o}$ Obtained from enthalpy measurements of transition and fusion heats combined. $^{\rm b}$ Precision uncertainty.

TABLE VI

ENTROPY SUMMARY: *n*-PARAFFIN HYDROCARBONS OCTANE THROUGH HEXADECANE, CAL. DEG.⁻¹ MOLE⁻¹

n-Octane

0-12°K.	Debye extrapolation, 7 degrees of freedom, $\theta = 134.0$ °K.	0.258
12-216.38	Solid, graphical, $\int C_{\text{satd}} d \ln T$	44.708
216.38	Fusion, 4957/216.38	22.909
216.38-298.16	Liquid, graphical, $\int C_{\text{satd}} d \ln d$	
	Г	18.451
Entropy (± 0.17)	of liquid at 298.16 °K.	86.326

n-Nonane

0-12°K	Debye extrapolation 7 degrees	
0-12 K.	of freedom, $\theta = 129.5^{\circ}$ K.	0.286
12-217.19	Solid, graphical, $\int C_{\text{satd}} d \ln T$	49.579
217.19	Transition, 1501/217.19	6.911
217.19-219.66	Solid, graphical, $\int C_{\text{satd}} d \ln T$	0.712
219.66	Fusion, 3697/219.66	16.831
219,66-298.16	Liquid, graphical, $\int C_{\text{satd}} d \ln d$	
	T T	19.772
Entropy (± 0.19)	of liquid at 298.16°K.	94.091
	<i>n</i> -Decane	
0–12°K.	Debye extrapolation, 8 degrees	
	of freedom, $\theta = 137.1 ^{\circ}$ K.	0.276
12 - 243.51	Solid, graphical, $\int C_{\text{satd}} d \ln T$	58.643
243.51	Fusion, 6863/243.51	28.184
243.51-298.16	Liquid, graphical, $\int C_{\text{satd}} d \ln d$	

Т

Entropy (± 0.20) of liquid at 298.16 °K.

14.690

101.793

n-Undecane

0–12°K.	Debye extrapolation, 7 degrees	
	of freedom, $\theta = 124.9$ °K.	0.318
12 - 236.6	Solid, graphical, $\int C_{\text{satd}} d \ln T$	62.104
236.6	Transition, 1639/236.6	6.927
236.6 - 247.59	Solid, graphical, $\int C_{\text{satd}} d \ln T$	3.850
247.59	Fusion, 5301/247.59	21.410
247.59-298.16	Liquid, graphical, $\int C_{\text{satd}} d \ln d$	
	T	14.886
Entropy (± 0.22)	of liquid at 298.16°K.	109.495

n-Dodecane

0-12°K.	Debye extrapolation, 8 degrees	
	of freedom, $\theta = 132.3 ^{\circ}\text{K}$.	0.304
12 - 263.59	Solid, graphical, $\int C_{\text{satd}} d \ln T$	72.728
263.59	Fusion, 8804/263.59	33.400
263.59-298.16	Liquid, graphical, $\int C_{\text{satd}} d \ln d$	
	Т	10.835
Entropy (± 0.23)	of liquid at 298.16 °K.	117.267

n-Tridecane

0−12°K.	Debye extrapolation, 8 degrees	
	of freedom, $\theta = 127.6 ^{\circ}$ K.	0.341
12 - 255.0	Solid, graphical, $\int C_{\text{satd}} d \ln T$	76.382
255.0	Transition, 1831/255.0	7.180
255.0 - 267.79	Solid, graphical, $\int C_{\text{satd}} d \ln T$	5.339
267.79	Fusion, 6812/267.79	25.438
267.79-298.16	Liquid, graphical, $\int C_{\text{sard}} d \ln d$	
	T	10.286

Entropy (± 0.25) of liquid at 298.16 °K. 124.966

n-Tetradecane

0–12°K.	Debye extrapolation, 8.5 de-	
	grees of freedom, $\theta = 131.1^{\circ}$	
	К.	0.335
12 - 279.03	Solid, graphical, $\int C_{\text{satd}} d \ln T$	86.925
279.03	Fusion, 10,772/279.03	38. 6 05
279.03-298.16	Liquid, graphical, $\int C_{\text{said}} d \ln d$	
	T	6.881
Entropy (± 0.26)	of liquid at 298.16 °K.	132.746

n-Pentadecane

0–12°K.	Debye extrapolation, 9 degrees	
	of freedom, $\theta = 130.2$ °K.	0.362
12-270.9	Solid, graphical, $\int C_{\text{satd}} d \ln T$	90.782
270.9	Transition, 2191/270.9	8.088
270.9-283.11	Solid, graphical, $\int C_{\text{satd}} d \ln T$	-6.495
283.11	Fusion, 8268/283.11	29.204
283.11-298.16	Liquid, graphical, $\int C_{\text{satd}} \mathrm{d} \ln$	
	T	5.784

Entropy (± 0.28) of liquid at 298.16°K. 140.416

n-Hexadecane

0–12°K.	Debye extrapolation, 9 degrees	0.007
	of freedom, $\theta = 129.0$ K.	0.307
12-291.34	Solid, graphical, $\int C_{\text{satul}} d \ln T$	101.189
291.34	Fusion, 12,753/291.34	43.774
291.34-298.16	Liquid, graphical, $\int C_{\text{satd}} d \ln d$	
	T	2.765
Entropy (± 0.29)	of liquid at 298.16 °K.	148.095

Jan. 20, 1954

vestigators. Ubbelohde¹⁰ also observed a marked increase of the heat capacities below the melting point of *n*-tetradecane, *n*-pentadecane, *n*-hexadec-ane and *n*-octadecane Pitzer,¹¹ in studies of the heat capacities of ethylene dichloride and dibromide, found a gradual increase in the heat capacity of the crystals which he attributed to the beginning of rotation of the whole molecules about their long axes. From a study of the change of dielectric constant with temperature of some long-chain alkyl alcohols, amines and bromides, Hoffman and Smyth¹² observed that a marked increase in dielectric constant takes place below the melting point and attributed this to the gradual onset of molecular rotational freedom. This phenomenon has been termed "prerotation."¹³ From X-ray studies, Müller¹⁴ concluded that *n*-paraffin molecules tend to rotate about their longitudinal axes at temperatures below their melting points. The specific heat measurements on the normal paraffins, below their melting and transition temperatures, accord with the concepts of Pitzer, Hoffman and Smyth, and Müller. However, from the heat capacity data alone it can only be said that an abnormal energy-

(10) A. R. Ubbelohde, Trans. Faraday Soc., 34, 282 (1938).

(11) K. S. Pitzer, THIS JOURNAL, 62, 331 (1940).

(12) J. P. Hoffman and C. P. Smyth, *ibid.*, **71**, 431 (1949); *ibid.*, **71**, 3591 (1949); *ibid.*, **72**, 171 (1950).

(13) C. P. Smyth, Trans. Faraday Soc., **42A**, 175 (1946).

(14) A. Müller, Proc. Roy. Soc. (London), A127, 417 (1930); ibid., A138, 514 (1932).

Fig. 2.—Specific heat vs. reduced-temperature curves for several *n*-paraffins.

absorbing process occurs below the melting or transition temperatures and that the effect of this phenomenon is too large to attribute to heterophase premelting.

BARTLESVILLE, OKLA.

[DEPARTMENTS OF CHEMISTRY AND METALLURGY, NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY]

Thermodynamics of the In-In₂S₃ System

BY ALVIN J. THOMPSON, MORRIS F. STUBBS AND JOSEPH A. SCHUFLE

RECEIVED AUGUST 10, 1953

The phase diagram for $In-In_2S_3$ (previously published) indicated the probable existence of four sulfides of indium, In_2S_3 , In_3S_4 , In_5S_6 and InS. In the present work each of these compounds was prepared by melting together the calculated amounts of indium metal and In_2S_3 under a helium atmosphere. Each compound was then reduced at various temperatures with hydrogen gas in a dynamic system so that the exit gases could be analyzed for hydrogen and hydrogen sulfide. From the equilibrium data obtained, free energies of reaction for each reduction were obtained. From these values, free energies of formation for each of the four sulfides of indium were calculated. Free energies of each reaction as a function of temperature are shown graphically.

Published literature gives no values for the thermodynamic properties of the sulfides of indium. The phase diagram for the $In-In_2S_3$ system previously published¹ showed that the $In-In_2S_3$ system was quite complex, and indicated the probable existence of four sulfides of indium: In_2S_3 , (In_3S_4) , (In_5S_6) and InS. An attempt has been made to calculate the thermodynamic values of these compounds from the equilibrium constants obtained by reduction of these sulfides with hydrogen. The results help to give a more coherent picture of the $In-In_2S_3$ system, and agree well with the results of the thermal analysis.¹

Experimental Part

The equilibrium values for the reduction of the sulfides of indium were determined in a dynamic system similar to

the one previously described² which was modified to permit analysis of the exit gases for hydrogen and hydrogen sulfide. The charge of 10–12 g. of the various sulfides was suspended on washed and ignited asbestos in the Vycor reaction tube. The incoming gas passed into the reaction tube at a rate of 5–10 cc. per minute. The total volume of the exit gases was measured in a gas buret, and the mixture was then analyzed for H₂S and H₂. When the per cent. of H₂S in the exit mixture was high, the H₂S was removed by bubbling the mixture through 44% aqueous KOH solution. The volume of H₂ collected over the KOH solution was then determined, and the volume of H₂S in the exit mixture was small, titration with standard iodine solution, by means of a Tutwiler apparatus, provided the determination. In the case of the reduction of In₂S₃, where the value of the equilibrium constant ($K_e = P_{H_2B}/p_{H_2}$) was large, the equilibrium was approached from both sides, and separate determinations were made with pure H₂, pure H₂S, and mixtures of the two as incoming gases. In the case of all the other sulfides, where the value of the equilibrium constant was small, pure H₂ was

⁽¹⁾ M. F. Stubbs, J. A. Schuße, A. J. Thompson and J. M. Duncan, THIS JOURNAL, 74, 1441 (1952).

⁽²⁾ M. F. Stubbs, J. A. Schuße and A. J. Thompson, *ibid.*, **74**, 6201 (1952).